Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xuan Huang, Li-Ping Xiao and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.105$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(benzimidazole- κN)bis(3,5-dihydroxy-benzoato-кO)copper(II) trihydrate

In the crystal structure of the title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cu}^{\text {II }}$ ion is coordinated by two benzimidazole (bzim) molecules and two 3,5dihydroxybenzoate (dhba) anions in a tetrahedrally distorted square-planar geometry. Aromatic $\pi-\pi$ stacking is observed between parallel bzim ligands and between roughly parallel bzim and dhba units. An extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network helps to consolidate the crystal structure.

Comment

$\pi-\pi$ Stacking between aromatic rings is an important noncovalent interaction and is correlated with electron-transfer processes in some biological systems (Deisenhofer \& Michel, 1989). As part of our ongoing investigations on the nature of $\pi-\pi$ stacking (Chen et al., 2003; Li et al., 2005), the title $\mathrm{Cu}^{\text {II }}$ complex, (I) (Fig. 1), has been prepared and its crystal structure is reported here.

(I)

The $\mathrm{Cu}^{\text {II }}$ ion in (I) is coordinated by two benzimidazole (bzim) molecules and two 3,5-dihydroxybenzoate (dhba) anions in a tetrahedrally distorted trans $-\mathrm{CuN}_{2} \mathrm{O}_{2}$ squareplanar geometry (Table 1), the dihedral angle between the O1/ $\mathrm{Cu} / \mathrm{N} 31$ plane and the $\mathrm{O} 5 / \mathrm{Cu} / \mathrm{N} 41$ plane being 6.3 (2) ${ }^{\circ}$. A hydroxy $\mathrm{O} 3^{\text {ii }}$ atom [symmetry code: (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$] of a neighboring complex occupies a possible apical site for the $\mathrm{Cu}^{\mathrm{II}}$ ion, but the very long $\mathrm{Cu} \cdots \mathrm{O}^{\mathrm{ii}}$ separation of 2.813 (2) \AA, indicates negligible bonding between these atoms. There is little difference between the $\mathrm{C}-\mathrm{O}$ - bond lengths of the $\mathrm{C} 17 /$ O1/O2 and C27/O5/O6 carboxylate groups (Table 1), implying electronic delocalization.

A partially overlapped arrangement between parallel N31containing bzim and N31 ${ }^{\mathrm{i}}$-bzim ligands is observed (Fig. 2) [symmetry code: (i) $1-x,-y, 1-z$]. The face-to-face separation of 3.338 (9) A clearly implies the existence of $\pi-\pi$

Figure 1
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen-bonding interactions. [Symmetry code: (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.]

Figure 2
$\pi-\pi$ Stacking between parallel bzim ligands in (I) [symmetry code: (i) $1-x,-y, 1-z]$. H atoms have been omitted.
stacking between these bzim ligands. In addition, the $\mathrm{C} 11-$ benzene ring is roughly parallel to [dihedral angle $=18.3(2)^{\circ}$] and partially overlapped with the C36 ${ }^{\text {ii }}$-bzim ligand (Fig. 3) [symmetry code: (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$]. The separation of C 15 and the C36 ${ }^{\text {ii }}$-benzene plane is 3.276 (3) \AA, and the distance of the C36 ${ }^{\text {ii }}$ atom from the C11-benzene plane is 3.383 (3) \AA. These findings suggest the existence of $\pi-\pi$ stacking between bzim and dhba ligands. A Cambridge Structural Database (Version 5.27; Allen, 2002) search indicates this is the first report of $\pi-\pi$ stacking involving the dhba anion.

An extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network occurs in (I) (Table 2), which helps to consolidate the crystal structure.

Figure 3
$\pi-\pi$ Stacking between roughly parallel bzim and dhba ligands in (I) [symmetry code: (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$]. H atoms have been omitted.

Experimental

A water/ethanol solution $(20 \mathrm{ml}, 9: 1)$ containing $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$, benzimidazole $(2 \mathrm{mmol})$ and $3,5-$ dihydroxybenzoic acid (2 mmol) was stirred for 1 h at 333 K and then filtered. Blue single crystals of (I) were obtained from the filtrate after 12 d .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$Z=4$
$M_{r}=660.08$	$D_{x}=1.561 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{\downarrow} / n$	Mo $K \alpha$ radiation
$a=16.313(5) \AA$	$\mu=0.85 \mathrm{~mm}^{-1}$
$b=9.740(2) \AA$	$T=295(2) \mathrm{K}$
$c=17.838(5) \AA$	Prism, blue
$\beta=97.605(12)^{\circ}$	$0.33 \times 0.23 \times 0.10 \mathrm{~mm}$
$V=2809.4(13) \AA^{3}$	

Data collection
Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.735, T_{\text {max }}=0.920$
26824 measured reflections 6430 independent reflections 4732 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.051$ $\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0463 P)^{2}\right. \\
& \quad+1.3478 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1$	$1.9365(17)$	$\mathrm{C} 17-\mathrm{O} 1$	$1.274(3)$
$\mathrm{Cu}-\mathrm{O} 5$	$1.9449(17)$	$\mathrm{C} 17-\mathrm{O} 2$	$1.249(3)$
$\mathrm{Cu}-\mathrm{N} 31$	$1.990(2)$	$\mathrm{C} 27-\mathrm{O} 5$	$1.268(3)$
$\mathrm{Cu}-\mathrm{N} 41$	$2.001(2)$	$\mathrm{C} 27-\mathrm{O} 6$	$1.249(3)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 5$	$177.50(7)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 41$	$87.78(8)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 31$	$92.29(7)$	$\mathrm{O} 5-\mathrm{Cu}-\mathrm{N} 41$	$91.19(8)$
$\mathrm{O} 5-\mathrm{Cu}-\mathrm{N} 31$	$88.96(8)$	$\mathrm{N} 31-\mathrm{Cu}-\mathrm{N} 41$	$174.07(8)$

metal-organic papers

Table 2
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N33-H33 . ${ }^{\text {O }} 2 W^{\text {i }}$	0.86	2.03	2.845 (3)	158
$\mathrm{N} 43-\mathrm{H} 43 \cdots \mathrm{O} 1 W^{\text {ii }}$	0.86	2.03	2.875 (4)	167
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 6^{\text {iii }}$	0.88	1.75	2.610 (2)	165
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 2^{\text {ii }}$	0.98	1.70	2.681 (3)	174
$\mathrm{O} 7-\mathrm{H} 7 \cdots \mathrm{O} 3 \mathrm{~W}$	0.89	1.79	2.639 (3)	160
$\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 4^{\text {iv }}$	0.89	1.97	2.832 (3)	165
$\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{O} 7^{v}$	0.89	2.03	2.907 (4)	168
$\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O} 2 W$	0.95	2.26	3.160 (4)	160
$\mathrm{O} 2 W-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{v}}$	0.92	1.96	2.882 (3)	175
$\mathrm{O} 2 W-\mathrm{H} 2 B \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.92	1.96	2.878 (3)	175
$\mathrm{O} 3 W-\mathrm{H} 3 A \cdots \mathrm{O}^{\text {vi }}$	0.97	2.03	2.951 (3)	158
$\mathrm{O} 3 W-\mathrm{H} 3 B \cdots \mathrm{O} 2^{\text {vii }}$	0.96	1.79	2.753 (3)	173

Hydroxy H atoms and water H atoms were located in a difference map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/

MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was supported by the Natural Science Foundation of China (grant No. 20443003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. \& Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
Deisenhofer, J. \& Michel, H. (1989). EMBO J. 8, 2149-2170.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, H., Yin, K.-L. \& Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

