metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Xuan Huang, Li-Ping Xiao and Duan-Jun Xu*

Department of Chemistry, Zheijang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.004 Å R factor = 0.043 wR factor = 0.105 Data-to-parameter ratio = 16.2

For details of how these key indicators were automatically derived from the article, see http://journals.jucr.org/e.

Bis(benzimidazole-*kN*)bis(3,5-dihydroxybenzoato- κO)copper(II) trihydrate

crystal structure of the title compound, In the $[Cu(C_7H_5O_4)_2(C_7H_6N_2)_2]$ ·3H₂O, the Cu^{II} ion is coordinated by two benzimidazole (bzim) molecules and two 3,5dihydroxybenzoate (dhba) anions in a tetrahedrally distorted square-planar geometry. Aromatic π - π stacking is observed between parallel bzim ligands and between roughly parallel bzim and dhba units. An extensive $O-H\cdots O$ and $N-H\cdots O$ hydrogen-bonding network helps to consolidate the crystal structure.

Comment

 π - π Stacking between aromatic rings is an important noncovalent interaction and is correlated with electron-transfer processes in some biological systems (Deisenhofer & Michel, 1989). As part of our ongoing investigations on the nature of π - π stacking (Chen *et al.*, 2003; Li *et al.*, 2005), the title Cu^{II} complex, (I) (Fig. 1), has been prepared and its crystal structure is reported here.

The Cu^{II} ion in (I) is coordinated by two benzimidazole (bzim) molecules and two 3,5-dihydroxybenzoate (dhba) anions in a tetrahedrally distorted trans-CuN2O2 squareplanar geometry (Table 1), the dihedral angle between the O1/ Cu/N31 plane and the O5/Cu/N41 plane being 6.3 (2)°. A hydroxy O3ⁱⁱ atom [symmetry code: (ii) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$] of a neighboring complex occupies a possible apical site for the Cu^{II} ion, but the very long $Cu \cdots O3^{ii}$ separation of 2.813 (2) Å, indicates negligible bonding between these atoms. There is little difference between the C–O- bond lengths of the C17/ O1/O2 and C27/O5/O6 carboxylate groups (Table 1), implying electronic delocalization.

A partially overlapped arrangement between parallel N31containing bzim and N31ⁱ-bzim ligands is observed (Fig. 2) [symmetry code: (i) 1 - x, -y, 1 - z]. The face-to-face separation of 3.338 (9) Å clearly implies the existence of $\pi - \pi$ Received 9 August 2006 Accepted 15 August 2006

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen-bonding interactions. [Symmetry code: (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$.]

Figure 2

 π - π Stacking between parallel bzim ligands in (I) [symmetry code: (i) 1 - x, -y, 1 - z]. H atoms have been omitted.

stacking between these bzim ligands. In addition, the C11benzene ring is roughly parallel to [dihedral angle = 18.3 (2)°] and partially overlapped with the C36ⁱⁱ-bzim ligand (Fig. 3) [symmetry code: (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$]. The separation of C15 and the C36ⁱⁱ-benzene plane is 3.276 (3) Å, and the distance of the C36ⁱⁱ atom from the C11-benzene plane is 3.383 (3) Å. These findings suggest the existence of π - π stacking between bzim and dhba ligands. A Cambridge Structural Database (Version 5.27; Allen, 2002) search indicates this is the first report of π - π stacking involving the dhba anion.

An extensive $O-H\cdots O$ and $N-H\cdots O$ hydrogen-bonding network occurs in (I) (Table 2), which helps to consolidate the crystal structure.

Figure 3

 $\pi - \pi$ Stacking between roughly parallel bzim and dhba ligands in (I) [symmetry code: (ii) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$]. H atoms have been omitted.

Experimental

A water/ethanol solution (20 ml, 9:1) containing $CuCl_2 \cdot 2H_2O$ (1 mmol), Na_2CO_3 (1 mmol), benzimidazole (2 mmol) and 3,5dihydroxybenzoic acid (2 mmol) was stirred for 1 h at 333 K and then filtered. Blue single crystals of (I) were obtained from the filtrate after 12 d.

26824 measured reflections

 $R_{\rm int} = 0.051$

 $\theta_{\rm max} = 27.5^\circ$

6430 independent reflections 4732 reflections with $I > 2\sigma(I)$

Crystal data

$$\begin{split} & [\mathrm{Cu}(\mathrm{C}_7\mathrm{H}_5\mathrm{O}_4)_2(\mathrm{C}_7\mathrm{H}_6\mathrm{N}_2)_2]\cdot 3\mathrm{H}_2\mathrm{O} & Z = 4 \\ & M_r = 660.08 & D_x = 1.561 \ \mathrm{Mg \ m^{-3}} \\ & \mathrm{Monoclinic}, \ & P_1/n & \mathrm{Mo} \ & K\alpha \ \mathrm{radiation} \\ & a = 16.313 \ (5) \ \mathrm{\AA} & \mu = 0.85 \ \mathrm{mm^{-1}} \\ & b = 9.740 \ (2) \ \mathrm{\AA} & T = 295 \ (2) \ \mathrm{K} \\ & c = 17.838 \ (5) \ \mathrm{\AA} & \mathrm{Prism, \ blue} \\ & \beta = 97.605 \ (12)^\circ & 0.33 \times 0.23 \times 0.10 \ \mathrm{mm} \\ & V = 2809.4 \ (13) \ \mathrm{\AA}^3 \end{split}$$

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.735, T_{max} = 0.920$

Refinement

Table 1

Selected geometric parameters (Å, °).

Cu-O1	1.9365 (17)	C17-O1	1.274 (3)
Cu-O5	1.9449 (17)	C17-O2	1.249 (3)
Cu-N31	1.990 (2)	C27-O5	1.268 (3)
Cu-N41	2.001 (2)	C27-O6	1.249 (3)
O1-Cu-O5	177.50 (7)	O1-Cu-N41	87.78 (8)
O1-Cu-N31	92.29 (7)	O5-Cu-N41	91.19 (8)
O5-Cu-N31	88.96 (8)	N31-Cu-N41	174.07 (8)

Table 2	_	
Hydrogen-bond ge	eometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N33-H33\cdots O2W^{i}$	0.86	2.03	2.845 (3)	158
N43 $-$ H43 $\cdot \cdot \cdot$ O1 W^{ii}	0.86	2.03	2.875 (4)	167
O3-H3···O6 ⁱⁱⁱ	0.88	1.75	2.610 (2)	165
$O4-H4\cdots O2^{ii}$	0.98	1.70	2.681 (3)	174
O7-H7O3W	0.89	1.79	2.639 (3)	160
$O8-H8\cdots O4^{iv}$	0.89	1.97	2.832 (3)	165
$O1W-H1A\cdots O7^{v}$	0.89	2.03	2.907 (4)	168
$O1W - H1B \cdots O2W$	0.95	2.26	3.160 (4)	160
$O2W-H2A\cdots O6^{v}$	0.92	1.96	2.882 (3)	175
$O2W - H2B \cdots O3^{ii}$	0.92	1.96	2.878 (3)	175
O3W−H3A···O7 ^{vi}	0.97	2.03	2.951 (3)	158
$O3W - H3B \cdot \cdot \cdot O2^{vii}$	0.96	1.79	2.753 (3)	173
Symmetry codes: $-r \pm \frac{3}{2}$, $v \pm \frac{1}{2}$, $-z \pm \frac{3}{2}$.	(i) $-x + 1, -2$	y, -z + 1; (i)	i) $-x + \frac{3}{2}, y + \frac{1}{2}$	$, -z + \frac{3}{2};$ (iii) -z + 1; (vi)

 $\begin{array}{c} -x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}; \quad (10) \quad x - 1, y, z; \quad (10) \quad -x + 1, -y + 1, -z + \frac{1}{2}; \\ -x, -y + 1, -z + 1; \quad (vii) -x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}. \end{array}$

Hydroxy H atoms and water H atoms were located in a difference map and refined as riding in their as-found relative positions, with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm O})$. Other H atoms were placed in calculated positions, with C-H = 0.93 Å and N-H = 0.86 Å, and refined in riding mode, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C,N})$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The work was supported by the Natural Science Foundation of China (grant No. 20443003).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Chen, Z., Xu, D.-J., Li, Z.-Y., Wu, J.-Y. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 253–259.

Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2170.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.